THE EBNER FACILITY OF THE FUTURE

EBNER Group Journal for Progress in Industrial Furnace Technology

Volume 30. Issue 01. / April 2020. www.ebner.cc

EBNER

Ladies and Gentlemen. Esteemed readers of the **HICON®** Journal, Dear friends and colleagues.

2020 opens a new decade, a milestone bringing a time of both change and innovation at **EBNER**.

One of the most important goals that we have set for ourselves and, as is usual at EBNER, have defined in customer oriented terms, is We make our customers Total Cost of Ownership champions. EBNER facilities stand out due to the performance advantages they offer, features that despite higher initial investment costs make customers TCO champions in only a few years.

Please take the time to read the article on page 4, in which we show you concrete examples of significant differences between ourselves and competitors from America, Asia and Europe.

Turning to environmental issues, which are receiving more and more focus as time goes on, environmental impact and sustainability have played a significant role at EBNER for years. We will expand this approach even further in 2020 and work even more intensively on go-green developments and products, which should allow our customers to become showcase examples in this area as well.

In the meantime, the EBNER HICON[®] magazine has evolved into a magazine for the whole group.

In this issue, you will thus find an exciting mix of themes and projects from every EBNER Group company.

I would, however, like to mention one article in particular You will certainly be able to remember that in 2018 we introduced a unique design for a bell annealer charging system that had been developed in-house here at EBNER. One such system has recently been successfully installed at one of our customer's works, and a full report can be found on page 28.

On a more unfortunate note, shortly before this issue went to print I learned to my regret that my team and I will not be able to meet you in person at the WIRE & TUBE trade fair (March 30 - April 3, 2020).

We will, of course, still be available to host individual visits to our company. Should you be interested, will strive to keep you informed of EBNER's new developments through other channels and forms of presentation.

Yours, Robert Ebner CEO

14

16

18

20

24

26

28

32

34

EED. Copper manufacturing

EED. CHINA

- INTERNET: The HICON[®] Journal articles are available on our website at www.ebner.cc. Click NEWS & PRESS / HICON[®] Journal to download this and past issues of the magazine.
- IMPRINT: HICON[®] Journal: The EBNER Customer Journal, Volume 30, Issue 1, April 2020 / Copyright: EBNER Industrieofenbau GmbH, Ebner-Platz 1, 4060 Leonding, Austria / Tel.: (+43) 732 68 68-0 / Fax: (+43) 732 68 68-1000 / Email: hiconiournal@ebner.cc / Reproduction, in full or in part. is authorized only with the express written permission of EBNER Industrieofenbau GmbH. Photography: EBNER Industrieofenbau GmbH. Layout: EBNER. www.ebner.cc / Translation: Steve Rossa, Chen Lin, Gertner Group / Editing: Viktoria Sengleitner / Published twice yearly

TCO CHAMPION. EBNER technical paper EBNER. STRATEGY	EBNER® STRATEGY
NEW AND UNIQUE. HPI/Gautschi Casthouse Revolution Center GAUTSCHI & HPI technical paper	Gautschi bie Wier of the
E ³ EBNER ENERGY EFFICIENCY. EBNER technical paper EBNER. SUSTAINABILITY	EBNER® sustainability
HEAT TREATMENT FACILITIES FOR THE FUTURE. EBNER technical paper ELECTRICAL STEEL STRIP	STEEL STEEL
AUTOMATED NON-DESTRUCTIVE QUALITY ASSURANCE. HPI technical paper	HPI
EBNER STRIP CLEANING FACILITIES. EBNER technical paper EBNER. TECHNOLOGY	STEEL STEEL
THE BEST OF BOTH WORLDS. EBNER technical paper EBNER. USA	EBNER®
PROVEN EBNER TECHNOLOGY. HICON [®] floater furnace facility CHALCO RUIMIN. CHINA	ALUMINIUM
THOSE WHO CONSTANTLY IMPROVE STAY ON TOP. EBNER technical paper EBNER. RESEARCH & DEVELOPMENT	EBNER® RåD
EED. Copper manufacturing industry EED. CHINA	EED CHINA
A NEXT-GENERATION EBNER FACILITY. HICON/H ₂ [®] bell annealer facility WIELAND. AUSTRIA	COPPER BASE METAL COPPER BASE METAL
PACC MODULE - TAILORED TEMPERING BY EBNER. EBNER technical paper EBNER. RESEARCH & DEVELOPMENT	EBNER® Rad
GNA ALUTECH INC. EBNER technical paper GNA. CANADA	

TOTAL ACQUISITION COSTS

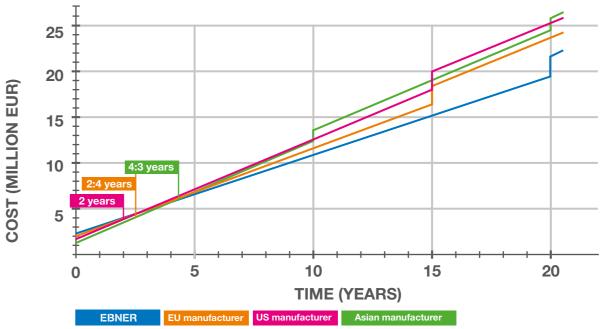
ONGOING OPERATING COSTS

TCO champion.

EBNER makes its customers Total Cost of Ownership champions.

What is TCO?

TCO stands for Total Cost of Ownership, a comprehensive measure of the costs of products, goods and services. It takes into account not only the cost of procurement, but also the direct and indirect running costs that are created over the complete service life of the product. This approach to costs provides valuable assistance when examining business-related questions such as whether or not to invest.


FRANZ WIESINGER EBNER technical article

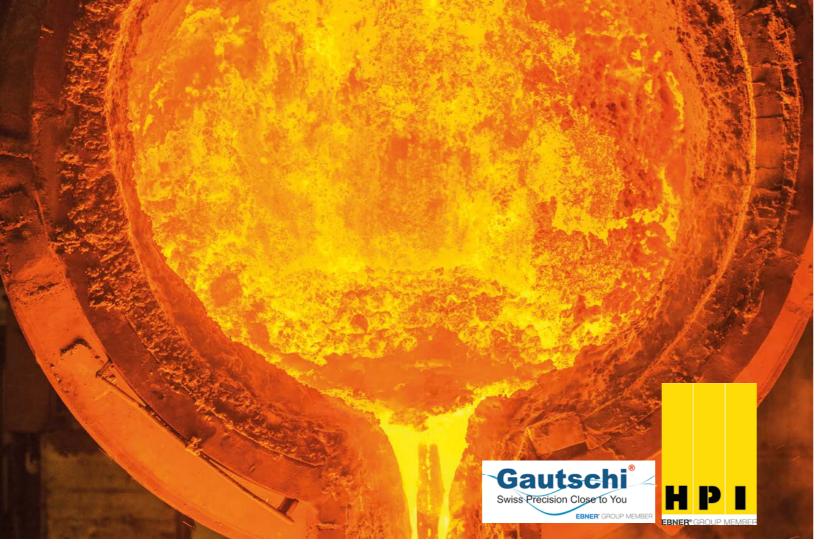
To companies that want to remain competitive in hotly contested markets, the nuts and bolts of long-term success are low operating costs, short production cycles, low energy costs and high quality the cost of procuring a facility that will remain in operation for twenty years or more makes up around 15 % of its overall cost. The

EBNER is not shy of being directly compared to its comremaining 85 % of its cost is comprised of continuous expenses for maintenance and repair, as well as the cost petitors in any of these categories. As a pioneer in the of energy. Together, these are the real cost drivers. field of industrial heat treatment, we have over 70 years of experience in furnace design and fabrication. Our high-quality manufacturing facilities in Austria, the USA This larger fraction is often underestimated or ignored, as it is hidden at the time of purchase - it can be compared and China guarantee not only the highest possible quality to an iceberg, the bulk of which is hidden below the surand the longest possible service life, but state-of-the-art face of the water. This means that investment decisions technology as well. Those willing to take a look at all the are often made before adequate information on longcosts when investing in a facility may be surprised to see term running costs is available. how quickly they, despite an initially-higher investment, reach the break-even point and enter the circle of TCO **EBNER** is guite aware of these long-term costs, for which champions.

reason a significant element in our strategy has been to make our customers TCO champions.

	ASIA	EU	USA
Production time (h/t)	30.4 %	4.7 %	30.4 %
Annual throughput (t/year)	-25.2 %	-5.3 %	-23.4 %
Energy consumption			
electrical power (kWh/t)	+30.5 %	-3.7 %	0 %
gas (m³/t)	+8.5 %	+7.4 %	+10.3 %
Operating costs (OPEX)			
EUR/t	+28.7 %	+10.7 %	+23.7 %
EUR/year (identical throughput)	+21.2 %	+9.5 %	+17.1 %
Gross profit (EUR/t)	-21.2 %	-7.8 %	-17.4 %
Break-even point (max. throughput):	4.3 years	2.4 years	2.0 years

There are many features of our facilities that can make you a TCO champion:


- » Short annealing times
- » Low energy consumption
- » High throughput capacity
- » High facility availability
- » Long service life
- » Continuous improvement
- » High economy
- » World-wide service

Despite the higher procurement costs of an EBNER facility, the break-even point is reached after only about 2.0 years. After 15 years of service, savings have reached 4.8 million Euros.

New and unique.

HPI/Gautschi Casthouse Revolution Center – start up in April, 2020 in Ranshofen.

TOM JUMELET GAUTSCHI News from Austria

With the joint forces of HPI and Gautschi under the umbrella of the EBNER Group, it was clear that our shared market position as the full solution provider of aluminum casthouses would be strengthened.

BACKGROUND AND GOALS

Our combined product lines include melting furnaces for both primary applications and a variety of common types of scrap. They include furnaces with capacities from 8 to 140 t and melt rates up to 40 t/h, horizontal (HPI) and

RAINER EDTMEIER HPI news from Austria

vertical (Gautschi) casting machines and heat treatment furnaces designed for either continuous or batch operation. Charging machines, US testing systems and billet sawing machines round out our product range.

Both HPI and Gautschi have been supplying the international aluminum industry with casting facilities for billets and slabs for many years, though HPI has focused on horizontal casting while Gautschi has focused on vertical casting.

Several years ago, Gautschi began to refine an existing mold design for vertical continuous casting that had proven itself in industrial applications. The main goals A dedicated hall was built for the pilot facility next to HPI's were to increase yields and to enable a completely autonoffices in Ranshofen. Two complete, automated casting omous casting process - without any intervention by the lines are installed: operators required.

The increase in yield would be achieved primarily by The line installed by Gautschi is comprised of a 7.5 t reducing butt curl (distortion of the bottom part of the gas-fired casting furnace, equipped with the appropriate metal treatment equipment. Paired with a full-scale verbillet that develops during the initial stage of casting), but also by reducing butt swell (expansion of the bottom part tical casting unit sized for industrial production this line of the billet). fulfills all the requirements for carrying out state-of-theart technological casts, even with regard to automation and hands-free casting.

This innovative mold has successfully gone into operation at Aleris' Belgian works, and other projects are currently underway in the USA and China. Tests carried out » HPI line on 3xxx, 5xxx,6xxx and 7xxx alloys showed a significant HPI installed the horizontal casting line, which incorpoimprovement in yields, paired with extremely high prorates an electric furnace, in-line metal treatment and a cess safety: it was no longer necessary for the operators state-of-the-art casting facility. If needed, the 7.5 t furto intervene in the casting process. nace from the neighboring Gautschi line can also be used.

Decades of continuous progress and the technical development that has come with it have made HPI the tech-A fully-equipped lab with metallographical and analytinology leader in many aspects of horizontal casting. cal equipment has also been provided, where all required Together with its customers and project partners, HPI is testing and sampling can be carried out. constantly pushing the development of molds, materials **STARTUP** and equipment forward.

HPI/GAUTSCHI CASTING CENTER IN RANSHOFEN, **AUSTRIA**

The technologies used in continuous casting, as well as the automation systems that are associated with them, are very advanced. Interventions in the process sequence by the operators, in particular those around molten metal, have become virtually unnecessary. This ensures that the highest safety-related requirements can be fulfilled.

The newly-built Casthouse REvolution Center includes facilities for both vertical and horizontal casting, and is located immediately next to the office building.

HPI's new offices in Ranshofen, Austria

CASTHOUSE DESIGN

» Gautschi line

The first casts are planned for the end of the first quarter, 2020. The casting center will then be available to fill a wide variety of roles, as a casthouse for customer projects, trial runs, training and product development. In particular, these will include:

- » Training and testing for our customers
- » Mold development, both customized and general
- » Customized alloy development
- » (Small) production runs with exotic/small batches for our customers
- » Technological development such as advanced burner technology and CO₂-free melting

www.c-r-c.info

FEEL FREE TO CONTACT US!

If you are interested in visiting our new casting center for a demonstration, specific tests or small production runs, please feel free to contact

Gautschi Head of Sales Oliver Jansen, jano@gautschi.cc **HPI Managing Director and Head of Sales** Rainer Edtmeier, r.edtmeier@hpi.at

Energ Efficiency.

The resolute pursuit of sustainability in production and the environment.

WALTER VORTREFFLICH **EBNER** sustainability

EBNER takes environmental responsibility very seriously. To us, "economy" and "ecology" are not opposites. As a globally-active family-owned company we constantly take an environmentally-aware approach, setting standards for environmentally-friendly production.

Customers place their trust in EBNER, not only because we are the world market leader for heat treatment furnace facilities but also because we are pioneers in the field of environmental protection.

E³ - EBNER ENERGY EFFICIENCY.

Within the framework of sustainable production, EBNER focuses on the environment and has developed facilities with an exceptional degree of energy efficiency.

Through the use of new technologies such as energy recovery, lightweight workbases or combustion air preheating using large recuperators, EBNER has continuously improved the energy efficiency of its facilities.

Comparisons made by customers between our facilities and those from our competitors show that we have a clear and measurable advantage in terms of energy consumption. Today, it is already possible to operate the majority of our facilities CO2-neutrally with renewable energy. Our goal is to enable climate-neutral operation of every EBNER facility by 2024, using renewable energy.

SUSTAINABILITY AT EBNER

As a pioneer in the field of industrial plant engineering, we recognize the responsibility we have toward the environment. It is for this reason that we have deeply anchored the principle of sustainability in our company's goals, obligating ourselves to uphold it.

GUIDING PRINCIPLES FOR SUSTAINABILITY IN THE EBNER GROUP

- » Sustainability is a significant element in our company strategy.
- » Our technology and solutions require sustainable development.
- » Sustainability in thought and action is reflected in our processes and in our products.
- » We conserve resources, and actively take measures for environmental protection.
- » In each of our regions, we accept our social responsibilities.

Concrete measures for environmental protection are laid down in the E³ principles, and include the areas listed below.

26 % energy savings

through the use of hydrogen as a process atmosphere

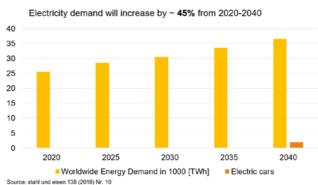
Heat exchanging bells for maximum energy utilization 25 % energy savings with the use of an **EBNER** heat exchanging bell

8 % reduction in CO₂ emissions through combustion air preheating with an **EBNER** large recuperator

Up to 50 % energy savings through thermal energy recovery

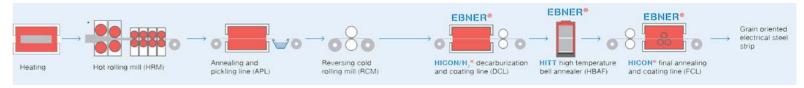
40 % hydrogen savings through process atmosphere recycling

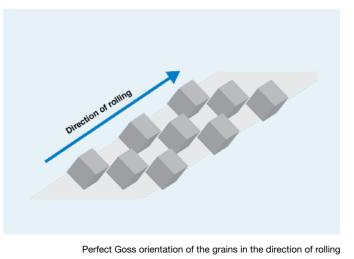
ECO-friendly technology


Heat treatment facilities of the future.

The effects of increasing global energy demand on grain-oriented electrical strip.

MARIUS KREUZEDER **EBNER** technical article


The global demand for electrical power will grow by about 45 % between 2020 and 2045. In turn, this will require expansion of existing energy infrastructure over the next few decades. The increase in demand will be caused not only by the increasing numbers of electric vehicles, but also by the general increase in the availability of electricity throughout the world. Paired with the demand for power is a strong and ever-increasing interest in grain-oriented electrical steel strip (~7 % CAGR), which is used in the manufacture of efficient transformers.


Compared to NGO electrical steel strip, the production of GO electrical steel requires a highly complex, multi-Transformers are essential components of any power stage heat treatment process. The complete production distribution network. They are needed to convert current workflow can be seen in the figure shown below. It is very into a suitable form before it can be transported or used. important that the individual heat treatment steps are perfectly matched with the alloying system in order to The core of the transformer needed for this conversion achieve the best magnetic properties. EBNER offers the consists of efficient grain-oriented (GO) electrical steel facilities described below for this application:

strip, which is also known under a variety of names such as silicon steel and transformer steel. Transformers can be generally divided into two types, large power transformers and the smaller distribution transformers.

After cold rolling, grain-oriented electrical steel strip The use of standard grades of CGO (conventional is heat treated in a continuous furnace to decarburize grain-oriented) steel is generally used for distribution and recrystallize it. In EBNER HICON/H.® decarburiztransformers, while the highly-efficient HGO (highly pering lines, this process takes place in a finely-tuned and meable grain-oriented) grades are preferred for power precisely-maintained furnace atmosphere. The highly transformers. efficient and consistent decarburization process inhibits magnetic aging, and ensures the long-term efficiency of Grain-oriented electrical steel strip is particularly wella transformer. Optionally, ammonia can also be used to suited for use in transformers, as in static applications nitride special HGO (highly-permeable grain-oriented) the magnetic fluxes run in defined directions. The grain grades in a nitriding zone following decarburization, oriented electrical steel strip has outstanding magnetic which improves magnetic characteristics even further

properties in the direction of rolling, due to a preferential orientation of the grains. The strict orientation of the easily-magnetizable grains, known as "Goss" orientation (see figure Perfect Goss orientation of the grains in the direction of rolling), makes the magnetization processes in the direction of rolling very favorable in terms of energy.

To reduce eddy current losses and improve energy efficiency, extremely thin material (0.18 - 0.35 mm) is used, grain sizes up to several cm are selected and the material is alloyed with around 3 % Si.

» HICON/H[®] decarburizing and coating line (DCL)

Production workflow of grain-oriented electrical steel strip

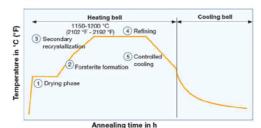
HICON/H .º decarburization line at GO Stalprodukt, Frvdek-Mistek. Czech Republic

during the high-temperature anneal. The strip is then cooled slowly and evenly, and coated with a magnesium oxide layer in either an in-line or off-line process. EBNER offers these lines in cooperation with selected strip handling partners.

THE STRENGTHS OF AN EBNER FACILITY, COM-PARED TO STANDARD DESIGNS, PROVIDE SIGNIF-ICANT ADVANTAGES TO OUR CUSTOMERS AND **INCLUDE THE FOLLOWING:**

- » Precise atmosphere flow, separation of atmospheres and exact control of the atmosphere humidification and supply system
- · Perfect dewpoint control using the humidifier
- · Controlled convection to ensure even decarburization
- Low CO levels to increase the decarburization rate
- · No contamination of the atmospheres from the different technological zones
- » Extremely low carbon contents (< 0.0030 % C, 30 ppm) ensure the best possible magnetic properties without aging
- » The very latest burner/radiant tube technology and rapid heating-up systems for high heating gradients to achieve efficient decarburization and improved texture (crystalline orientation)

» HITT high temperature bell annealer facility (HBAF)


For high-temperature anneals (HTA), EBNER has developed the **HITT** (High Temperature & Tight) line of 2-stack bell annealers High-temperature anneals use secondary recrystallization to form grains with the magnetically advantageous Goss texture (3). The high processing temperatures (above 1150 °C) and straight hydrogen atmospheres also remove sulfur and nitrogen from the material. First, a drying phase (1) is used to dry the MgO coating applied during an upstream process, which inhibprocessing steps (1 - 5) of the high-temperature anneal are depicted schematically below.

its the formation of stickers in the wraps at high workload

space temperatures by forming a Forsterite layer (2). The

Process

- Drving phase residual moisture from MgO coating is removed
- Forsterite formation glass-like insulating and separating layer is formed Secondary recrystallization - Goss texture is formed
- Refining sulphur and nitrogen are removed
- 5 Controlled cooling - to avoid stress caused by contractio

Schematic representation of a HITT annealing cycle and its component phases

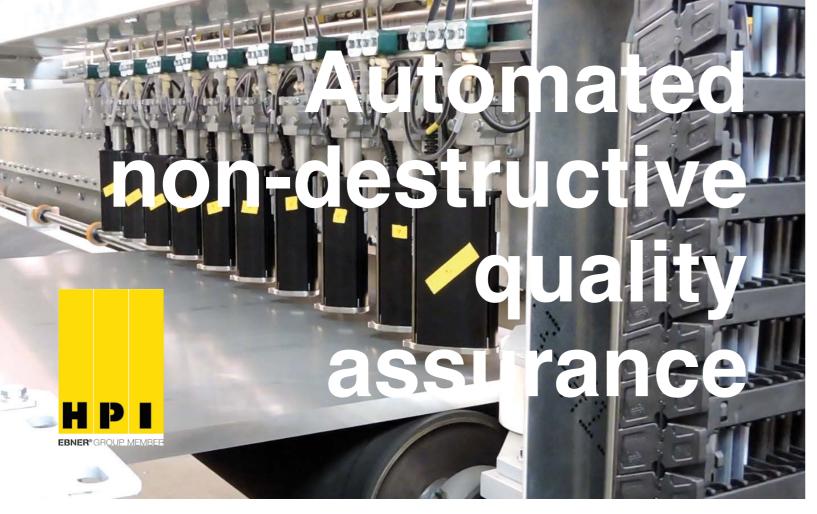
In contrast to standard multi-stack furnace designs, a **HITT** bell annealer is a gas-tight design in which each coil stack is enclosed within a single heating bell. The atmosphere around each coil stack is isolated from the surrounding heating or cooling chamber by the hydraulically-clamped inner cover, with its silicone seal.

The heating system may be gas-fired or electric, ensuring that the facility operates as economically as possible. A cooling bell is employed to ensure rapid cooling, which takes place in 100 % hydrogen.

The features described above provide customers with significant advantages when compared to standard designs:

Homogeneous magnetic properties, shorter annealing cycles, extended inner cover service life, increased productivity due to uniform temperature distribution within the charge stack thanks to the pat-

ented coil support structure and symmetrical heating EBNER offers these lines in cooperation with selected » Significantly reduced consumption of N₂ and H₂ (up strip handling partners. to 50 %, compared to other designs) thanks to the encapsulated workload space; argon is not required as Unique characteristics of our lines include the following: a process atmosphere in the cooling phase


» Significantly increased productivity, improved sur-» Controlled thermal leveling provides perfect control face finish and prevention of further nitriding by over the geometric properties of the final product cooling in 100 % hydrogen atmosphere » Homogeneous controlled cooling ensures ideal flatness and prevents interior stresses

» HICON[®] final annealing and coating line (FCL)

The HICON® final annealing and coating line is the last production step in terms of heat treatment. The material is coated with an inorganic and surfactant insulating coating, and is then dried and sintered in a catenary furnace. This is followed by thermal leveling (thermo-stretching) in a continuous furnace, which takes place in atmosphere to improve flatness without affecting the magnetic characteristics. In this production step, the challenge is not only to provide the correct strip tension but also to apply the correct thickness/composition of coating to achieve optimal magnetic and geometric properties.

HITT high-temperature bell annealer (HBAF) charged with 2 GO coils

HPI supplies a variety of solutions for non-destructive material testing.

RAINER EDTMEIER HPI news from Austria

The constant increase of the safety requirements for aircraft also leads to the continuous improvement of quality control. These notably expensive controls can be both sped up and fully documented by using automated testing procedures.

In particular, non-destructive methods of material testing can be used. Among these methods is conductivity testing, currently employed by our customer KUMZ, for which a system was successfully handed over at the end of November, 2019.

CONDUCTIVITY TESTING

Conductivity is a physical measure reflecting the ability of a material to conduct electric current. Conductivity is the constant of proportionality between the density of the current and the strength of the electrical field. In a formula, it is usually represented by the Greek letter sigma (o). The value itself is usually given in a derived SI unit, siemens per meter (S/m) - e.g. A/(Vm). As aluminum alloys exhibit very high conductivity, values are given in

MS/m in all typical applications. When providing values, another possibility is to use the international copper standard. In this case, a value is given as a percentage of the conductivity of pure annealed copper. For this reason it is referred to as percent of International Annealed Copper Standard, abbreviated %IACS.

When measuring conductivity using eddy currents, a fluctuating magnetic field is created using a coil. This induces a voltage in the material to be tested. Depending on the specific conductivity of the material, eddy currents develop in the material that in turn generate a second magnetic field. In accordance with Lenz's law, this magnetic field opposes the first field and and is measured with a second coil. The amplitude and phase of the signal that is received are important when assessing the conductivity. Due to the "skin effect", the eddy currents are more dense in layers near the surface; the higher the frequency of the magnetic field, the less it penetrates into the material.

To use an eddy current testing method is to use a fast, comparative method. That is, a reference standard is compared to the tested material to, for example, determine the success of heat treatment, the microstructure, or alloy composition.

A roller table moves an aluminum slab through a fixed measuring unit, in which the specific conductivity is mea-

Thickness measurement

sured by oscillating probes positioned above and below the plate.

Following conductivity measurement, plates pass through a marking station. Here, ink jet heads mark the sampling The programs can be pre-deupper surface of the plates in accordance with either of fined for each plate, and are based on internationally recognized standards the marking variants described in the ASTM B-666 and such as ASTME 1004-02, MIL STD-1537C, EN2004-1 and AMS ASTM B-666 M-01 standards. For plate widths up to 2772F, as well as on the customer-specific testing regu-2000 mm, the desired text is printed in lines spaced up lations encountered in the aerospace industry. to 150 mm apart. Plates with widths over 2000 mm are printed with two lines along their circumference.

When used in the laboratory, it is relativelv simple to control physical influenc-A needle printing station is installed at the end of the ing factors such as the lift-off effect, edge effect facility which, depending on the thickness of the plate, and the temperature during measurement. In industrial scribes the upper or front sides with a pre-selected text. applications under harsh conditions, this can be an Depending on the specifications, this text can be generextremely challenging task. ated from a combination of the plate ID number, date or other characteristics.

GEOMETRIC MEASUREMENT

The contact-free measurement of plates is carried out using laser triangulation on a precisely-aligned mea-All required basic data such as the unique plate ID numsuring table 35 meters in length. The high-speed conber and the testing specifications that must be observed trol system collects and processes data as a measuring are sent to the facility by the higher level Manufacturing frame travels over the plate. Along with the length and Execution System (MES, level 3). In return, all informawidth, the flatness and squareness can be determined tion starting with the measurement and calibration data and displayed to the operators at the operator interface. and continuing on up to the marking options for the ink Mechanical measuring probes also determine the plate jet and needle printers is displayed at the operating stathickness, depending on the temperature, at different tion, saved, and transmitted to the level 3 system. This freely-selected positions. ensures full documentation of the testing procedure.

Conductivity testing

PLATE MARKING

DATA PROCESSING AND DOCUMENTATION

EBNER strip cleaning unit with strip transfer from the rinsing zones to the dryer

EBNER strip cleaning facilities.

Integrated into annealing lines or as stand-alone equipment.

HUBERT BINDREITER EBNER technical article

The incoming material for continuous strand annealing lines generally comes from a cold rolling mill, and the surface of the roll-hardened strip is generally covered with rolling lubricant, rolling lubricant emulsion and metal fines. This means that it is necessary to clean the strip before annealing.

Residual lubricants adhering to the surface of the strip negatively influence both the stability of the process and the quality of the strip. Furthermore, clean strip surfaces minimize contamination inside the furnace, and so increase the availability of a facility.

THE DEVELOPMENT OF EBNER STRIP CLEANING **SYSTEMS**

In the past, over 20 projects involving strip cleaning systems were implemented in partnership with Nisterhammer, a specialist in strip cleaning systems. During these projects, the complete automation system and all commissioning work were provided by EBNER.

When Nisterhammer shut down operations in 2014, EBNER was faced with the challenge of either finding an alternative partner or expanding its its existing knowhow and turning it into a new EBNER product.

The basic technology possessed by Nisterhammer was acquired, improved by a team of experts, and developed into a new line of products.

GENERAL PRINCIPLES AND LAYOUT

A cleaning facility consists of 3 cleaning zones, with a dryer installed downstream of them. The individual zones are separated by pairs of squeeze rolls.

» Cleaning zone 1: the high pressure zone

Hot demineralized water:, without any chemical cleaning agents added heats the strip and the rolling lubricant/lubricant emulsion adhering to it. The lubricant and emulsion are then washed off the strip. This is carried out at high pressure by special nozzles. A full-flow filtering process is then used to efficiently separate the mixture of lubricant and demineralized water in a coalesence separator. Thus, clean water is again available for further use in the water circuit.

» Cleaning zone 2: the brushing zone

In this zone, nozzles spray hot lye over the strip - or, in new design variants, no chemical cleaning agents are used. The film of lubricant still coating the strip is broken up by rotating brushes, which support the cleaning effect. This also washes off any remaining fines.

» Cleaning zone 3: the rinsing

In the three-stage rinsing zone, the strip is rinsed with hot demineralized water to remove any alkaline residues.

The system is built as a series of cascades. Fresh demineralized water is only supplied to rinsing zone 3, and runs back to the upstream rinsing and/or cleaning zones. This ensures that the consumption of fresh water is kept low.

After the cleaning process, the strip runs through the HICON[®] dryer.

» HICON[®] dryer

The high-convection dryer removes any residual moisture from the surface of the strip.

ADVANTAGES OF

Cleaning with pure demineralized water in the first cleaning zone

Efficient separation of lubricant and water using full-flow filtering

Special roller bearings and guides

Conductivity regulation in brushing and rinsing zone

Multiple uses of demineralized water (cascade principle)

Use of waste heat from the furnace to heat the drve and utility tanks

Fleece rollers used for final squeezing

SAVINGS IN UTILITY SUPPLY COSTS (LYE, ELE COMPARED TO STANDARD FACILITY DESIGNS

The following heating systems are available:

- » Electric heating system
- » Natural gas heating system
- » Steam heating system
- » Combined systems making use of waste heat from the annealing furnace

INTEGRATING A STRIP CLEANING FACILITY INTO **AN ANNEALING LINE**

- In 2019, two strip cleaning facilities were integrated into continuous bright annealing lines and successfully went into operation.
- The line at VDM Metals (Werdohl, Germany) processes thick special alloy (Ni-based, Fe-based, etc.) strip (see the report in HICON[®] Journal no. 02/2019, pp. 4 - 7).

At Arinox S.p.A. (Sestri Levante, Italy), wide and thin precision steel strip is processed at high line speeds.

STRIP CLEANING FACILITIES IN STAND-ALONE DESIGNS

Operating a strip cleaning facility as an offline unit can make good sense.

- Roll-hardened material that does not require a final heat treatment step can be cleaned without a complicated bypass of the furnace and the consequent loss of valuable annealing capacity.
- Several annealing lines can be supplied with material from a central cleaning facility, meaning that the anneal-
- ing lines do not require integrated cleaning sections. A stand-alone strip cleaning facility offers a high degree
- of flexibility, as the design of the facility does not need to take into account any limitations on line speed that may be required by the heat treatment process.
- Finally, as it is not absolutely necessary to operate the strip cleaning facility continuously, the strip handling systems can be relatively simple.

THE EBNER SYSTEM				
	 + Low operating costs due to a 50 - 100 % reduction in the consumption of alkaline cleaning agents + Eco-friendly 			
	+ Perfect cleaning results+ Simple waste water treatment+ Eco-friendly			
	+ Elimination of strip off-tracking / wrinkle formation			
es	+ Highly-stable process+ Improved cleaning and rinsing results			
	+ Low demineralized water consumption (approx. 1 m ³ /h)			
er	 + Low operating costs due to savings of up to 200 kWh/h 			
	+ Perfect drying results			
ECTRICITY, DEMINERALIZED WATER) OF 40 - 50 %,				

HERBERT GABRIEL EBNER news from the USA

The title of our customer symposium hosted last fall at EBNER Furnaces in Wadsworth, Ohio (USA) said it of the highlights was the progress report on the conall.

At the symposium, thermal processing solutions for both metals were reviewed with the goal of inspiring ideas on how each industry can adopt methods that may help improve their own "world".

To achieve this goal, we invited speakers from all the EBNER Group companies: Gautschi, HPI and our newest member, GNA Alutech.

Around 25 customers participated in the two-day symposium, where topics ranged from safety, equipment modernization and digitalization to equipment design. A session on customer services solutions and EBNER's recent and current R&D projects rounded the program out - along with evening programs, of course.

Our guest speaker from Alumore gave us great overview of a modernization project at a vertical casting pit, while Kaleb Wright from GNA introduced us to the fully automatic casthouse, where the processes and equipment are integrated into a much safer and more economical solution.

Rainer Edtmeier, HPI's General Manager, introduced the group to the advantages of their horizontal casting plants for extrusion and forging billets, plates and slabs. One struction of their new pilot casthouse plant (Casthouse Revolution Center) in Austria, where customers can see these advantages first hand. They can also develop casting processes and alloys at the plant, as well as obtain hands-on training for their operators with real equipment and liquid metal.

The casthouse was designed in close cooperation with Gautschi, and so naturally includes a vertical casting pit. Tom Jumelet, Gautschi's Chief Technology Officer, presented the aspects of vertical direct chill casting for rolling slab. This process uses their brand-new mold, which is getting a lot of attention due to lower CAPEX and OPEX.

Further symposium topics included recent and current R&D projects at EBNER, Gautschi and HPI. Thermal process digitalization was covered by our Chief Sales Officer, Walter Vortrefflich.

A presentation on our full range of Customer Service capabilities was the segue from liquid metals to the thermal processing of solid metals.

Advances in the field of aluminum heat treatment lines, from pre-heating, annealing and solution heat treatment to aging, were intensively discussed. A relatively new application, the hot forming of aluminum blanks for the automotive industry, was presented. This included an introduction to the pilot roller hearth furnace in our R&D facility in Austria, where we can assist our customers with product development

EBNER's most recent development, a fully automated charging and equipment handling system for bell annealer facilities, could not be left out and yet another presentation described it in detail. This new system has just been installed at one of our customer's works. You can read more about this installation in the article on page 28.

Our steel audience took note of EBNER's product range for the processing of electrical steels (both NGO and GO grades), as well as our solutionsfor the processing of advanced and third-generation high strength steels in batch and continuous lines.

The symposium was rounded off by a round table discussion on future industry needs, and of course a social

- program with visits to the local Wolf Creek Winery and an "Octoberfest" celebration with live music at the EBNER company pavilion where everybody had a good time.
- We would like to express our heartfelt thanks to all participants and organizers for making this a stimulating symposium.

Herbert Gabriel, Managing Director EBNER Furnaces, USA

www.ebnerfurnaces.com

The success of HICON[®] floater furnace i ilities in China as seen at Chalco Ruimin.

ZHANG LU EBNER news from China

At 10:18 a.m. on November 18, 2019, customer Chalco functionality for a Chinese customer. This technology Ruimin celebrated the end of its "production line projallows the continuous adjustment of cooling rates within ect of aluminum alloy plate and strip for automobile a range from 500 °C/s to 10 °C/s, and its advanced nature lightweight" with an equipment assessment and has won market recognition for EBNER. acceptance ceremony, held in the warm winter sun to **RELIABLE QUALITY** the sound of firecrackers.

The customer expressed their sincere approval for the The importance of quality for a company is self-evident, efforts and fruitful work of those participating in the projand is a determining factor in the vitality of a company. ect, their great expectations for future production, and EBNER adheres to the concept of quality first, and instills planned follow-up projects with subsequent equipment. this concept into every process making up the produc-At the end of ceremony, the final acceptance inspection tion, installation, testing and commissioning of a product. certificate (FAC) of the project was signed by both the customer and the equipment supplier representative. Every **EBNER** employee knows that only by firmly con-EBNER's 000726 Chalco Ruimin air cushion furnace trolling the quality, then we can bring reliable products to project had come to a successful end! our customers, and reliable equipment means a reliable future for our customers.

ADVANCED TECHNOLOGY

EBNER's rich experience, along with the advanced technology of HICON[®] air cushion furnaces, established a Although the project is subject to many uncontrollable good foundation for the success of the project. EBNER's factors, it ran according to plan. The production line was 000726 Chalco Ruimin air cushion furnace project is the handed over to the customer on time, thanks to efficient first time that EBNER installed the new SmartQuench® management and excellent cooperation within the team.

CHALCO RUIMIN. CHINA

CHEN BIN EBNER News from China

EFFICIENT MANAGEMENT

Air cushion furnace facility: view towards furnace from quench

Today, time means opportunity and profit – so the efficiency of **EBNER**'s management directly leads to customer satisfaction.

THE FUTURE

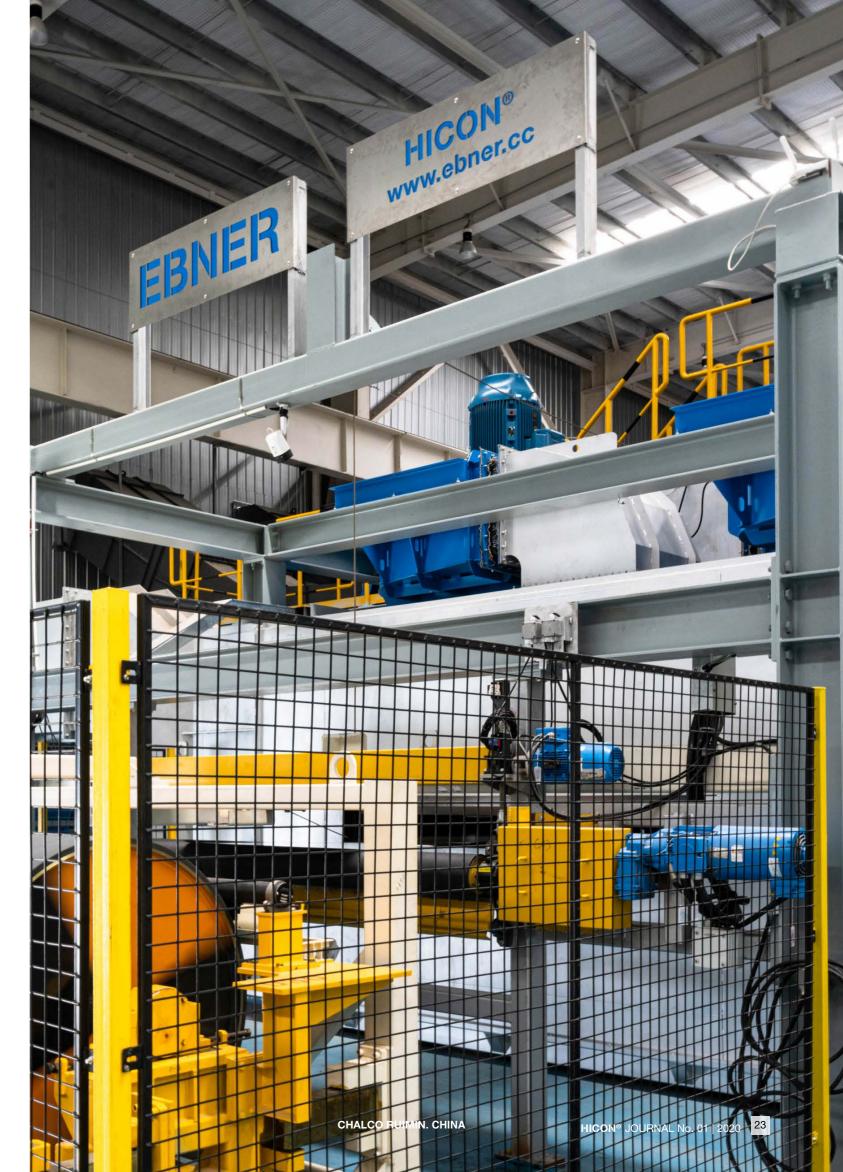
EBNER's involvement in China's air cushion furnace market originated with Chalco Southwest Aluminum. This was also the first time that **EBNER** air cushion furnace had entered the Chinese market.

Up to December, 2019, seven air cushion furnace production lines had been put into production in the Chinese market. Another four air cushion furnace production lines are in the design, manufacturing or installation phases, and will go into production in the near future. With the continuous development of vehicles using new energies, the demand for high-end aluminum plate for automobiles is increasing.

In order to meet the needs of the leap forward in the development of aluminum processing at Chalco, as well as to meet the increasingly strict requirements of the Chinese market for high-end plate and strip such as automotive plate or aviation plate, Chalco Ruimin selected EBNER air cushion furnace equipment.

EBNER will continue to help and support the growth of China's automotive market.

www.ruimin.com


TECHNICAL DATA OF FACILITY

length of heating section	abt. 72 m
length of cooling section	32.3 m

EBNER HICON® reheat/aging furnace

CHALCO RUIMIN. CHINA

Those who constantly improve stay on top.

From technological leaps and go-green developments on up to digitalization.

PETER SEEMANN **EBNER** Research & Development

One of the most significant challenges of a fast-paced economy is the ability to quickly develop innovative ideas into profitable products and to find those products a long-term, competitive position in the market. To do so, EBNER makes use of structured, systematic processes.

WHAT FORM DOES THE INNOVATION PROCESS TAKE AT EBNER?

Innovative ideas are submitted to and collected at the EBNER Innovation Hub (EIH). A panel of experts, along with the employees who submitted the ideas, then evaluate the submissions and a decision is made as to which ideas to pursue. Every innovation is documented in a database at the EIH. This allows evaluations and analyses to be made and information to be displayed graphically, e.g. as a portfolio representation.

The inspiration for such innovative ideas comes from our customers, the industry, scientific research and of course from our employees. Ideas are recorded in an innovation "fact sheet", and then described and evaluated in light of technical, economic and strategic criteria. If an innovation is "ready", it shifts to a product development process for further work.

The process of product development is carried out in a classic stage-gate process. For every phase, as well as for every gate, template documents stand ready for reporting, documentation and evaluation. These describe the required content, information and supporting records that are used by the panel of experts responsible for the relevant gate during the decision-making process. Evaluations are made using comparable criteria and indicators. This allows direct comparison of product development projects, evaluations and portfolio analyses.

Adaptive forms of these processes were deliberately chosen. Depending on the complexity and technical maturity of an innovation, it may move through the entire process or through an abbreviated/accelerated one. This minimizes the associated work, increases acceptance and the chances of success, and allows a flexible reaction to changes to the situation that occur at short notice.

At the end of the process a finished, market-ready product with an attractive potential return is available, and it is handed over to the Sales Department and Customer Services for marketing.

The following four EBNER developments are almost ready to market or have recently been placed on the market.

SPIKING FURNACE

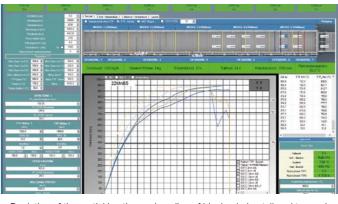
A typical heat treatment profile for AA6xxx strip during processing in a CASH line with additional spiking heat treatment

Spiking is a fast, short-duration heat treatment applied shortly after continuous solution annealing and quenching of AA6xxx automotive strip. It is an additional form of heat treatment differing from a reheating/pre-aging or stabilizing treatment flat-rolled automotive AA6xxx alloys processed with an additional spiking heat treatment step show increases in paint bake strength up to 7 %. EBNER has already manufactured and installed one such spiking furnace at one of the leading producers of automotive AA6xxx strip. Two other spiking lines will be installed soon in North America.

ALUMINUM HOT FORMING FURNACE

The aluminum hot forming furnace is a newly developed

A prototype roller-hearth furnace for aluminum hot forming


solution heat treatment furnace based on high convec-**PROCESS MODELING** tion heating technology (HICON®). It provides fast heating along with excellent temperature uniformity, meet-Increasingly complex heat treatment cycles, paired with ing the CQI-9 standard for the automotive industry. An increasing demands on process and production control aluminum hot forming furnace heat treats high strength systems, have meant that model-based control (Model aluminum alloys to increase their formability, allowing 3D Predictive Control, MPC) is also increasing in importance. parts with complex shapes to be manufactured using hot Currently, multiple models are in development at EBNER forming and quenching (HFQ) technology. EBNER has that will cover almost our entire line of facilities. These two different designs for hot forming furnaces, dependmodels supply not only optimized control of the furnace ing on the throughput and footprint requirements. The with regard to the precision of the process, but can also first is the multi-level batch furnace, while the second intervene in the production control system to minimize is the roller-hearth furnace. A prototype roller-hearth hot scrap and downtime. In a preliminary step, the models forming furnace has already been installed in the EBNER can be used to precalculate changes in processes or R&D laboratory, to showcase aluminum hot forming soludimensions, ensuring optimal setpoint changes. Subsetions to customers. quently, the models can also be used for permanent furnace control. Currently, the models are being interfaced ADVANCED BURNERS AND ALTERNATIVE HEATING with the control system of an EBNER facility to evaluate their responsiveness.

SYSTEMS

The charging technology developed by EBNER, also **ECOBURN** burner in the combustion chamber during trials known as HICONSABER®, has opened a new era in The main focus in this area has been optimization of the heat treatment with bell annealer furnaces. At typical bell EBNER ECOBURN family of burners, to ensure the lowannealer facilities, all handling movements of coils/carest possible NOx emissions - whether with burners that riers and bells are carried out by large, manually-operoperate normally with a flame or burners designed for ated overhead cranes. Charging and decharging the coils flameless combustion. These developments are of great consumes about 10 % of the total processing time. Any importance to ensure that strict emissions guidelines improvements to these operations would have measursuch as the MCP (Medium Combustion Plant Directive) able effects on the entire process sequence, which led to can be met. Work is currently focused on the ECOBURN the idea of the HICONSABER® system. This system is a FL burner, which is employed in high-temperature bright fully automated one, in which a fully-automatic charging annealing lines and hardening and tempering lines, as car collects the entire charge from the charging station well as in bell annealers. All developments will be inteand transports it to the workbase in a single step. The grated into other **ECOBURN** burners in the future, so first fully automatic bell annealer facility equipped with that they are also optimized. In the **RECOTEB®** 2 project, the HICONSABER® system has already started produclong-term trials of a new double-P radiant tube burner tion. You can find more information in the article starting are currently being carried at a hot-dip galvanizing facilon page 28. ity. These trials will allow information on the service life, efficiency and NOx emissions to be gathered under production conditions. Along with reducing emissions when using natural gas as a fuel gas, work is also being carried out on alternative methods of reducing CO_a.

Depiction of the partial heating and cooling of blanks during tailored tempering

In the future, they will be further developed to allow use not only for MPC but also for PPC (Property Predictive Control).

HICONSABER®

ED. CHIN

MA ZHIGUO EED news from China

EED Furnaces (Taicang) Co., Ltd. is a company in China wholly owned by the European EBNER Group.

EED is a supplier of economy-class heat treatment furnaces operated by the EBNER team in Taicang, China. Based on EBNER's technology and designs, EED develops markets by pursuing a 100 % made-in-China strategy. Sharing manufacturing resources with EBNER China, **EED** aims to provide outstanding quality.

As a member of the EBNER Group, EED mainly focuses on bell annealer furnaces, roller-hearth furnaces and batch-type (chamber) furnaces.

THE COPPER INDUSTRY IN CHINA

Over nearly a decade, China's copper processing industry has formed its own structure with copper wire, copper strip, copper pipe, copper rod and copper foil as the million tons in 2019.

main subdivisions. The average annual increase in pro-China's copper processing enterprises are highly conduction is 7 – 9 %, even as capacity reached up to 16 centrated in certain areas, mainly Guangdong, Zhejiang, Jiangsu, Jiangxi and Anhui. The four provinces make up around 55 % of China's entire copper processing capac-The majority of production is copper wire (44.64 %), with ity. The **EED** industrial furnace manufacturing plant is most of the rest as copper strip (19.88 %), copper pipe located in the center of these four provinces, making the (15.61 %) and copper bar (13.70 %). These four products production, transportation and servicing of the furnaces make up more than 90 % of the market share. ultra-convenient.

In terms of production, China plays an essential role in China's copper processing enterprises are tied to the the global copper processing industry. However, at the market, and are so subject to the main market currents level of products, we must still improve in comparison across the globe. The demand for new facilities is thus to other industrialized countries, especially in terms of rising gradually. However, the fierce competition and low quality, performance, diversification, refinement and unioverall profit in the industry make it impossible for many formity. In 2019, China imported 2.3 million tons of procompanies to buy the world's top-level equipment. cessed copper materials.

Sensitive to the possibility of modernization in the copper With the development of China's non-ferrous industry processing industry, **EED** took the initiative in contacting toward new, high-precision materials and deep processvarious enterprises. Between 2016 and today, as a meming, more opportunities for China's copper processing ber of the EBNER Group, we have sold 96 furnaces to industry will appear in the future in the following areas: customers in the copper processing field which have fully satisfied them in terms of both performance and energy » 5G base station construction consumption. EED has gradually been accepted by the » UHV (ultra-high voltage) Chinese copper industry, and has developed its own reputation.

- » intercity high-speed railway and urban rail transit
- » charging piles for electric vehicles
- » development of big data centers

LIU NING **EED** news from China

EED bell annealer for copper base metal

EED customers include the Anhui Chujiang Group, the Ningbo Boway Group, the Ningbo Jintian Group, thje Ningbo Xingye Group and others.

www.eedfurnaces.com

The first fully-automatic EBNER HICON/H,® bell annealer facility has successfully started production.

KARL WOHLFART

EBNER news from Austria

Wieland Austria, based in Amstetten, Lower Austria, has been a leading manufacturer of copper and copper alloy specialty tube and long products for many years. The company has now placed its trust in new bell annealer technology from EBNER.

A NEW CONCEPT FOR BELL ANNEALER HANDLING SYSTEMS

air / water cooling bells and a handling system (charger). The scope of supply also included special processing equipment required for the heat treatment of copper tube The following requirements characterize conventional that sees use both before and during heat treatment, bell annealer installations: such as an N₂/H₂ mixing system to generate process atmosphere, a vacuum pump unit and an internal tube purging system. The entire process sequence, from the

- » A reinforced shop structure and an overhead crane
- » High crane hook elevation or installation of the facility in a foundation trench
- » Continuous presence of operator personnel to manually handle the bells, as well as to charge/decharge the coils at the workbase

A state-of-the-art process control system to monitor and As in some cases these requirements lead to high investsupervise the process sequence, record and archive relment costs or cannot be met, EBNER decided about two evant process data and perform all data handling tasks years ago to develop a completely new concept for the - from planning to data exchange with the customer's handling systems at HICON/H,[®] bell annealer facilities. production control system - was also installed.

VERSATILE APPLICATION The new concept is based around a handling device with an elevator car installed at shop floor level, which is designed to travel on rails. This handling device shifts A bell annealer is characterized by its versatility and flexientire charge stacks in one step, and is also used to shift bility. Such a facility is capable at operating economically heating bells, cooling bells and inner covers fully autoat low throughput levels and small batch sizes, and can matically. All these tasks can be carried out without an be upgraded with relatively little effort by installing addioverhead crane.

THE FIRST ORDER

The new charging concept was first announced by EBNER at the WIRE & TUBE 2018 trade fair in Düsseldorf, Germany. Only three months later, Wieland Austria was convinced by the new concept and an order was placed for the turn-key delivery of a HICON/H.[®] bell annealer facility to heat treat copper and copper alloy LWC coils.

The facility is comprised of two workbases, each with a stack height of 2350 mm, a gas-fired heating bell, two

placement of an assembled charge stack, actual heat treatment with the heating and cooling sequences and on to retrieval of the charge takes place fully automatically, without any manual intervention.

Gas-fired HICON/H2® bell annealer facility with handling device for bells, inner covers and charge stacks

tional workbases - which is synonymous with increasing capacity.

the decision to invest in this type of technology.

The need for material temperatures reaching more than 800 °C and the ability to use different process atmospheres with hydrogen contents up to 100 % were important additional factors in the decision.

Along with LWC coils, which are annealed in special charge baskets, it is also possible to charge the facility with large steel drums filled with up to 2.5 tons of copper mill products.

AUTOMATIC COIL HANDLING AND STACK FORMA-**TION SYSTEM**

A fully automatic coil handling and stack formation system was also integrated into the overall facility design. After the heat treatment sequence has been completed the coils are packed, with the complete packing system ordered by the customer from Ingenia (a subsidiary of the In a nutshell, in comparison with other automation sys-ASMAG Group).

The overall concept also allows the facility to be operated without direct supervision. There is also the possibility of using the new charger to buffer multiple coil stacks before or after heat treatment, annealing them them one after another.

Significant advantages provided by fully automated bell annealer facilities include:

- For Wieland Austria, this aspect was a decisive factor in » Installation of the furnace facility in a simple workshop structure, without the need for an overhead crane (if a crane is installed, it need only be a maintenance crane) Implementation of increased charging heights in existing annealing shops when investing in replacement equipment (without an overhead crane, stacking heights can be increased by 1 - 2 m)
 - » Reduction of operator personnel and/or existing personnel may be employed to carry out other tasks
 - Reduction of workbase downtime to about half of current levels due to rapid and automatic travel movement and placement of the charge in a single step
 - » Increase of component service life and reduction of maintenance work through precise handling and exact positioning of bells and charges when shifted
 - » Increase in workplace safety through automatic operation
 - » Integration / interfacing with upstream and downstream processes

tems, use of a fully automatic handling system at a bell annealer facility increases throughput capacity and process safety even as it reduces maintenance and personnel costs.

ww.wieland.con

Fully automated coil handling and stacking station (Ingenia)

HICON[®] JOURNAL No. 01 | 2020 31

The PACC module from EBNER.

EBNER develops flexible and robust in-line technology to partially harden and temper (tailored temper) press-hardened components: the EBNER® PACC module (Precisely Accurate Contact Cool).

GERHARD SCHÖFL

EBNER technical article

The following announcement was made to the automotive industry in 2017: "Lightweighting does not bring significant advantages to electric vehicles; the weight of the vehicle is virtually insignificant." - Prof. Dr. Ferdinand Dudenhöffer, CAR Center Automotive Research, University of Duisburg-Essen.

Today, we see a trend in exactly the opposite direction: there has been a massive increase in the amount of lightweighting in modern car bodies, utilizing flexible hard/ soft zones in structural components.

If the generation of electricity is left out of the equation, electric motors are extremely efficient (efficiencies above 80 %). New developments also allow the recuperation of braking energy. This is what led to the thought that vehicle weights would only play a secondary role, as the energy required for acceleration would not be lost - at least in theory. Today, however, we have recognized that energy is actually lost twice: once during acceleration, and once during braking. This lowers the overall efficiency to around 60 %. An additional factor contributing to the rise of lightweighting is that components for electric vehicles, such as axles and batteries, are expensive. The lighter the vehicle, the smaller the motor can be - reducing cost. Furthermore, it should also be remembered that vehicle weights are restricted by European regulations for class B (standard passenger vehicle) driver's licenses.

All this means that lightweighting is still important.

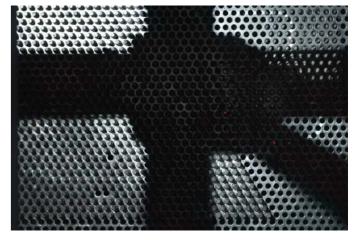
HOW DO YOU LIGHTWEIGHT STEELS?

The answer is press hardening. During press hardening, manganese-boron steel "blanks" - plates that have already been cut to size - are heated up to austenitizing temperature. They are then held at austenitizing temperature for about one minute to dissolve the carbides. The blanks are then transferred to a press equipped with a water-cooled die, and formed into a component.

The component is quenched to 170 °C at the same time, meaning that martensitic hardening also takes place. The result is a component with the highest possible strength, allowing the amount of required material to be reduced and with it the weight.


Demo press hardening line at the MAGNA works in Weikersdorf, Austria

WHAT DO THE NEW IN-LINE PACC MODULES OFFER?


For some time, **EBNER** has been investigating new in-line technologies to partially harden and temper the hard/soft zones in structural components. This process is also known as *tailored tempering*. The high component strength and low component weight provided by this process, as well as the precisely-tuned deformation of the component in a crash, are major reasons why tailored tempering is desirable.

Very hard components are also difficult to weld - it is therefore important that components be fabricated with soft zones, easing assembly and installation. Currently, press hardening is generally carried out with hot forming equipment in a press. Disadvantages of the approach include the high costs of the press, the rapid wear of hot sections, component distortion and limited flexibility should changes be desired.

include the high costs of the press, the rapid wear of hot sections, component distortion and limited flexibility should changes be desired.
 The new in-line PACC module for partial hardening and tempering was developed by EBNERs in-house R&D Department. This new technology makes it possible to

Top view of the cooling section of a press hardening furnace

easily create flexible soft zones in press-hardened components. It involves partially cooling the blanks directly in the furnace, where as in usual processes the blanks are heated up to austenitizing temperature. Partial cooling of specific areas takes place in the last section of the furnace facility, with cooling pins (Contact Cool) applied to the workpiece to lower the temperature of the soft zones.

The blanks are then formed in the press in the usual way.
The dies are (only) cooled, not heated. The geometry of the soft zones can be easily adapted, using a cartridge system. Additional advantages are a simple, robust system, no component distortion and flexible, adaptable transition zones. The service costs for stamping/pressing are also reduced significantly.

CALARTICLE

Blank with different temperature zones after a tailored tempering process in an EBNER PACC module

GNA alutech inc.

The specialist for recycling furnaces and autonomous casting solutions.

TED PHENIX

EBNER News from Canada

In June, 2019, the EBNER Group acquired a majority share of the Canada-based company GNA. GNA was founded 37 years ago by Ted Phenix in Montreal, Canada, and is an equipment supplier to the aluminum industry.

We mainly provide equipment for casthouses, such as melting furnaces for both clean and contaminated scrap, casting furnaces and homogenization furnaces, but are also the market leader in cathodes for the primary aluminum industry. Our main market is North America, though we have also supplied customers in China, the Middle East, Europe, India and South America.

An extensive description of GNA and its history was already provided in the last issue of the **HICON®** Journal. In this article we would like to highlight the developments GNA has made in two specific areas of our portfolio. These are our 'bread and butter' products, currently leading the way in reliability and performance at our client's plants.

SINGLE CHAMBER RECYCLING FURNACES

GNA has developed furnaces for melting (light) clean and contaminated scrap, including a single chamber furnace for painted profiles and chips. For chips, we use either a metal pump, like an EMP, or a side well with a separate mechanical pump to ingest the chip feed and make sure chips are submerged beneath the bath surface as fast as possible.

Since Gautschi has also recently developed similar technologies, GNA and Gautschi are working closely together to further develop this furnace type.

The GNA furnace is equipped with a specific combustion mode that includes oxygen injection into the melting furnace atmosphere at a specific time and under specific conditions monitored and controlled by the furnace PLC system.

This process allows the fumes from burning the paint or other similar contaminant to be in the furnace without the requirement for an external oxidizer or incineration pro-

A pivoting 50 t scrap melting and holding furnace

cess. Exhaust flue gases are monitored for oxygen content and when a specific level is reached, "fume destruction mode" is turned off and the furnace combustion system automatically returns to normal melting mode. Contaminant levels of up to 5 % can be successfully treated in the furnace with no ill effect on metal quality or refractory condition. Melt rates of up to 18,000 kg/h and more are currently achieved at various plants throughout the US and Mexico.

MULTI-CHAMBER FURNACES

GNA has developed our own multi-chamber furnace for recycling contaminated scrap, such as castings coated with grease and oil, heavy section painted profiles, sheets, and even coils contaminated with rolling oil with contamination levels up to 5 - 7 %. Once again, GNA and Gautschi are working together in using the multi chamber concept for a continuous casting operation using a melting/casting furnace.

The shell of a 145 t dual-chamber melting furnace during installation

ROTARY FURNACES

GNA has taken over the marketing and sales of a tiltable rotary furnace (TRF) for heavy contaminated scrap, dross and other forms of aluminum scrap. As the furnace has a door opening with a diameter of 2100 mm, GNA is now

working together with specific clients and starting dis-This plant is currently evaluating the process of integratcussions on using the TRF to melt scrap coils. ing an automatic metal sampling system from another supplier and the addition of a new skimming machine. The process used in the TRF furnace is based on using If these two systems can operate autonomously, the salts that bind to organic compounds in the scrap. This upgrades would allow this casthouse to operate fully avoids excessive burning of the aluminum as the high automatically. Once all tests have been completed at this amount of contamination combusts. GNA has designed casthouse in the US, GNA will be ready to offer this soluthe furnace in such a way that easy loading and operation to the world - including customers of Gautschi and tion is combined with high flexibility, as there are a wide HPI. variety of raw materials that can be processed. Specific fuel consumption varies with the type of cold charge, but While this innovation does not drastically reduce the typical consumption numbers are less than 50 m³/t. amount of personnel needed, it transforms their job from

handling to continuous improvement and monitoring. It With these three types of furnaces in our portfolio, GNA reduces variability in the process, resulting in faster cycle can offer a wide range of possibilities to the aluminum times, less variation in alloying, better dross removal practice and lowers the potential for operator-induced recycling industry. error overall.

AUTONOMOUS CASTING

Over the last several years, GNA has been working together with a customer to implement a new and revolutionary concept for operating a casthouse in "hands free" mode. In this concept, the majority of the operations have been automated and are controlled by a unified central control system. This provides a very important safety improvement over typical operations, where operators are constantly interacting with a hot furnace and in close proximity to charging, skimming, alloying and other activities involving molten metal. No manual intervention from operators is required close to the furnaces or casting machine, and the role of an operators is now more that of an observer.

The basic idea was developed by Kaleb Wright, now the CTO of GNA, supported by Ted Phenix. Working in close cooperation with the customer, it has now been installed as a part of a scrap melting operation in the southern US, using GNA furnaces.

All operations which normally require manual intervention or a visual check near the furnaces have been automated

The completed shell of the 145 t dual-chamber melting furnace

and integrated in a single operating production line. This includes the loading of cold metal into the melting furnace, dross removal at the furnace bath, the addition of alloying elements, temperature control, and the automatic transfer of molten metal to the holding furnace.

Melting furnace with a capacity of 18 t/h

UNBW 10092575

Volume 30. Issue 01. / April 2020. www.ebner.cc

also available by email!

Trade fairs. Conventions. 2020

June 8 - 10, 2020	ALUMINIUM CHINA	Shanghai	CN	Booth No.	1G40
October 6 - 8, 2020	ALUMINIUM DÜSSELDORF	Düsseldorf	DE	Booth No.	10E30
December 7 - 11, 2020	TUBE DÜSSELDORF	Düsseldorf	DE	Booth No.	ТВА
December 7 - 11, 2020	WIRE DÜSSELDORF	Düsseldorf	DE	Booth No.	ТВА

We look forward to seeing you there!

THE EBNER GROUP

EBNER

EBNER Industrieofenbau GmbH Furnaces, Inc.

Ebner-Platz 1 4060 Leonding AUSTRIA

(+43) 732 6868 Tel: email: sales@ebner.cc www.ebner.cc

> HPI **High Performance** Industrietechnik GmbH

Schlossstraße 32 5282 Braunau-Ranshofen AUSTRIA (+43) 7722 68420 Tel: email: hpi@hpi.at

www.hpi.at

Wadsworth, Ohio 44281 USA Tel: (+1) 330 335 1600 email: sales@ebnerfurnaces.com

www.ebnerfurnaces.com

Gautschi **Engineering GmbH**

Andhauserstrasse 52 8572 Berg TG USA

Tel: (+41) 71 666 66 66 email: info@gautschi.cc www.gautschi.cc

EBNER Industrial Furnaces (Taicang) Co. Ltd.

Beijing East Road 82 215400 Taicang, Jiangsu CHINA

(+86) 512 5357 6868 Tel: email: sales@ebner.cn www.ebner.cn

EBNER India Private Limited

A/310-311 Dynasty Business Park J B Nagar, Andheri-Kurla Road Andheri East, Mumbai - 400059 INDIA

(+91) 22 6139 3333 Tel: email: office-ei@ebner.cc www.ebner.cc

GNA alutech inc.

9495, Transcanadienne, Saint-Laurent (Québec) CANADA H4S 1V3

(+514) 956 1776 Tel: email: info@gna.ca www.gna.ca